- Vectorization
- Properties of Transpose
- Normal Equation
- Locally weighted regression
- "Parametic" learning algorithm
Fit fixed set of parameters(w) to data
EX) linear regression, Neural Network
주어진 학습데이터로 파라미터 학습을 완료한 이후에 test를 수행한다.
- "Non-parametic" learning algorithm
Amount of data/parameters you need to keep grows(linearly) with size of data
EX) K-nearest neighbors, Locally weighted regression
test를 수행할 때 학습데이터를 활용
- Linear regression
build model f(x) and fit w to minimize
- Locally weighted regression
Fit w to minimize
- Locally weighted regression with Γ
'3-2 > 기계학습' 카테고리의 다른 글
7주차-Regularization (1) | 2024.10.27 |
---|---|
6주차-Binary Classification (1) | 2024.10.27 |
4주차-Multiple features (1) | 2024.10.08 |
3주차-Linear Regression, Gradient Descent (0) | 2024.09.29 |
2주차-Dataset, 특징공간 (1) | 2024.09.17 |